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Precision Health aims to integrate an individual's
genetic code into their health care.

Integration of genomics can help to

1) identify those at risk, promoting disease prevention strategies;
2) diagnose disease at earlier stages where better control or even

mitigation of disease is possible;
3) predict disease severity allowing for early intervention and optimal,

effective management; and
4) select the most efficacious treatment.



The promise of the Polygenic Risk Score (PRS)
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PRS delivers on the scientific promise of
using genetics in predicting disease/health
outcomes in a translational framework that
is equitable across populations.
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Genomics =2 Phenotype: far greater than genetics in a silo

Genotype Genor-mcs & Proteomics Metabolomics
Transcriptomics
{ Integrated —omics
(Multi-omics, trans-
omics)
Models & Biomarker

o Prediction of Health & Disease )
Predictions Discovery

-

https://jme.bioscientifica.com
https://doi.org/10.1530//JME-18-0055




Multi-omics
= Phenotype
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Context matters : gene * environment interactions
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Multi-omics = Phenotype: The promise beyond the
Polygenic Risk Score (PRS)
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Integrative omics approaches to clinical translation:
PRS + MRS
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“Methylation risk scores significantly outperform the baseline and PRS models “

NPJ Genom Med . 25;7(1):50. Methylation risk scores are associated with a collection of phenotypes within electronic health record systems . Thompson et al.



Multi-omics =2 Phenotype: The promise beyond the
Polygenic Risk Score (PRS)
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Genetics for Aging: much broader in scope than the genetics of a single
biomarker or hallmark or age-related disease.
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Genetics for Aging: much broader in scope than germline variation.
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Telomere
Length
=8 |~

Hematopoietic Stem river
Cell Sample utation Clonal Expansion

Prevalence

£

8 Passenger
T o utation
58
OF®

£

(]}

I

Mitochondrial

DNA
S
@ (&

Cell

Mitochondrial

Copy Number




Genetics for Aging: much broader in scope than germline variation and

connectivity is high.
Hallmarks of Aging A lens on telomere biology
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Genetics for Aging: much broader in scope than germline variation and
connectivity is high.

www.nature.com/scientificreports J @
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OPEN Evaluating genomic signatures
of aging in brain tissue as it relates
to Alzheimer’s disease

MeganT. Lynch?, Margaret A. Taub?, Jose M. Farfel?, JingyunYang©?, Peter Abadir?,
Philip L. De Jager®*, Francine Grodstein?, David A. Bennett® & Rasika A. Mathias*
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Telomere length (TL) attrition, epigenetic age acceleration, and mitochondrial DNA copy number @
(mtDNAcn) decline are established hallmarks of aging. Each has been individually associated with @

il 's d i itive function, and hols Izheil 's disease (AD). Epi icage

and mtDNAcn have been studied in brain tissue directly but prior work on TL in brain is limited to
small sample sizes and most studies have examined leukocyte TL. Importantly, TL, epigenetic age
clocks, and mtDNAcn have not been studied jointly in brain tissue from an AD cohort. We examined
dorsolateral prefrontal cortex (DLPFC) tissue from N = 367 participants of the Religious Orders Study
(ROS) or the Rush Memory and Aging Project (MAP). TL and mtDNAcn were estimated from whole
genome sequencing (WGS) data and cortical clock age was computed on 347 CpG sites. We examined
dementia, MCl, and level of and change in iti hologic AD, and three g itative AD traits,
as well as of other di ative diseases and b lar diseases (CVD). We
previously showed that mtDNAcn from DLPFC brain tissue was associated with clinical and pathologic
features of AD. Here, we show that those associations are independent of TL. We found TL to be
associated with B-amyloid levels (beta=-0.15, p=0.023), hippocampal sclerosis (OR =0.56, p=0.0015)
and cerebral atherosclerosis (OR =1.44, p=0.0007). We found strong associations between mtDNAcn
and clinical measures of AD. The strongest associations with pathologic measures of AD were with
cortical clock and there were associations of mtDNAcn with global AD pathology and tau tangles.
Of the other pathologic traits, mtDNAcn was associated with hippocampal sclerosis, macroscopic
infarctions and CAA and cortical clock was associated with Lewy bodies. Multi-modal age acceleration,
accelerated aging on both mtDNAcn and cortical clock, had greater effect size than a single measure
alone. These findings highlight for the first time that age acceleration determined on multiple genomic Biological Age
measures, mtDNAcn and cortical clock may have a larger effect on AD/AD related disorders (ADRD)
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Summary & Challenges ®

1) When/where to measure?
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2) What to measure?
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Analytical validity
Accuracy and reliability of a test to measure
a specific biomarker

Clinical validit
The accuracy
predicts clinica

Analytical sensitivity

How often is the test positive when the
biomarker is present?

Analytical specificity

How often is the test negative when the
biomarker is not present?

Robustness
Repeatability and reproducibility of the assay
within and across laboratories.

Limits of detection

Lowest level of reliable detection of transcripts.

Stability
Collection, handling, transport of sample and
impact on robustness.

Gold standards
Reference sets for assessing sensitivity and
specificity.
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